National iESA versions

Deliverable no: D5.4 Work package no: WP 5

Work package title: Design-Implementation of the IMPAWATT web portal

WP leader: SEnerCon GmbH

Author: Claudia Julius, SEnerCon GmbH

Dissemination level: PU

IMPAWATT

IMPlementAtion Work and Actions To change the energy culTure

Grant Agreement number: 785041-IMPAWATT – H2020-EE-2016-2017/H2020-EE-2017-CSA-PPI Start date: 01.06.2018 Duration: 30 months

Document History

Date	Version	Prepared by	Approved by	Notes
29.11.2019	V1	SEN	PLA	
18.02.2020	V2	SEN		
Add date		Choose sname		

"The sole responsibility for the content of this publication lies with the IMPAWATT project consortium. It does not necessarily reflect the opinion of the European Union. Neither EASME nor the European Commission are responsible for any use that may be made of the information contained therein".

Contents

1	Exec	utive summary	3
2	Acce	ss to national iESA versions:	3
3	iESA	adaptation	5
4	Rela	tion to other activities in the project	5
5	Parti	ners´ contribution	5
6	Anne	ех:	7
	6.1	Energy carriers applied in companies in Italy	7
	6.2	Energy carriers applied in companies in Austria	8
	6.3	Energy carriers applied in companies in France	9
	6.4	Energy carriers applied by companies in Switzerland	10
	6.5	Energy carriers applied in companies in Finland	11
Li	st of f	igures	
		Link to iESA from the Impawatt monitoring section	
-	_	German/Austrian iESA adapted and branded to Impawatt	
	_	Italian iESA adapted and branded to Impawatt French and Swiss iESA adapted and branded to Impawatt	
	_	Finish/English iESA adapted and branded to Impawatt	

1 Executive summary

Based on D5.3 Report on national particularities to be taken into account to adapt the interactive Energy Savings Account (iESA) to the conditions in Switzerland and Finland, the iESA has been adapted for both countries. For Switzerland iESA is offered in three languages (French, Italian and German), for Finland iESA is offered as English version. Regarding the other national iESA versions for Italy, France and Austria, the versions that were produced during the IEE project European Enterprises Climate Cup were used, only missing text content resulting from iESA updates was translated and parameters on energy carriers (CO2 coefficients, scaling factors to convert into kWh) were provided by partners and integrated into the iESA backend. All national iESA versions were linked to the respective national Impawatt portals and are accessible from the monitoring part of the Impawatt platforms.

2 Access to national iESA versions:

The following links lead to the different national iESA versions if a user has registered and logged in to an account:

Austria: https://at.impawatt.com/iesaMonitoring

Finland: https://fi.impawatt.com/iesaMonitoring

France: https://fr.impawatt.com/iesaMonitoring

Germany: https://de.impawatt.com/iesaMonitoring

Italy: https://it.impawatt.com/iesaMonitoring

Switzerland: https://ch.impawatt.com/iesaMonitoring

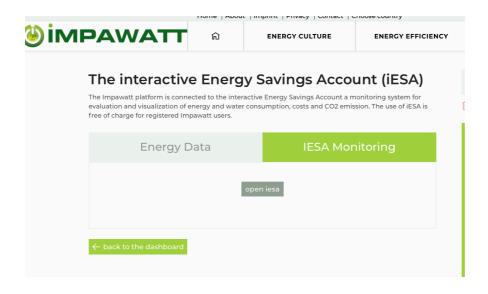


Figure 1: Link to iESA from the Impawatt monitoring section

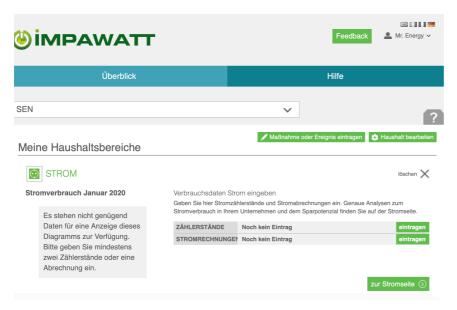


Figure 2: German/Austrian iESA adapted and branded to Impawatt

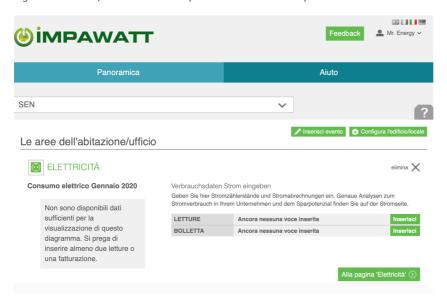


Figure 3: Italian iESA adapted and branded to Impawatt

Figure 4: French and Swiss iESA adapted and branded to Impawatt

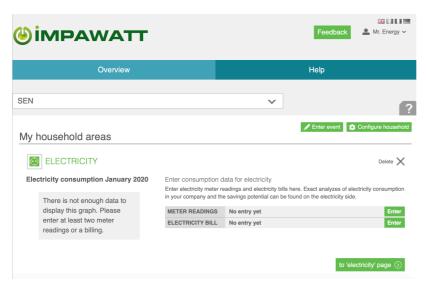


Figure 5: Finish/English iESA adapted and branded to Impawatt

3 iESA adaptation

The French, Austrian and Italian iESA basic version which has been produced during the Intelligent Energy Europe project European Enterprises Climate Cup (EECC) had to be updated by actual CO₂-coefficients, scaling factors (energy carrier units into kWh) and new text content that had to be translated because iESA had been modified since the end of the EECC project.

The translation was done using Excel templates by SEnerCon and partners. The parameters regarding CO2-coefficients and scaling factors were provided by partners and integrated into the iESA backend. They are attached to the Annex of this document.

The Finnish iESA was not translated into Finnish as most employees speak English and are able to use the platform in English. For Switzerland iESA is offered as German, French and Italian version.

The Finnish and Swiss platforms have been adapted based on national particularities and solutions that are compiled in the Report on national particularities for iESA adaptation to Switzerland and Finland which is available on the project website by the following link:

https://www.impawatt.com/wp-content/uploads/2019/12/IMPAWATT-Report-on-national-particularities-for-iESA-adaptation-to-Switzerland-and-Finland final.pdf

4 Relation to other activities in the project

Companies using the Impawatt platform can monitor their energy consumption and energy efficiency improvements planned and implemented within the monitoring part of the Impawatt platform. Companies, especially offices, aiming at a more detailed monitoring including different energy meters, may use the iESA in addition to the platforms' energy monitoring features.

5 Partners' contribution

Partners provided updated parameters on energy carriers and related CO2-coefficients and scaling factors to convert common units applied for the energy carriers into kWh. The parameters for all

countries can be found in the Annex. Partners tested their national iESA version and reported on eventual bugs and missing text translations.

6 Annex:

6.1 Energy carriers applied in companies in Italy

		Scaling factor	_	
		to convert to	CO₂ coefficient	Comment / e.g. Source,
Energy carrier	Unit	kWh (if applied)	kg/MWh	if available
				*in the absence of values
District Heating	MWh	1000	360*	declared by the operator
				Fattori di emissione
				per la produzione ed il
				consumo di energia
				elettrica in Italia,
Electricity	MWh	1000	308,1	ISPRA (2017)
				Fattori di emissione
				per le sorgenti di
				combustione
Wood pellets and				stazionarie in Italia,
briquettes	1000 kg = t	5,3 kWh/kg	340,6	ISPRA (2017)
				Fattori di emissione
				per le sorgenti di
				combustione
				stazionarie in Italia,
Natural gas	1000 Sm3	9,6 kWh/Sm ³	207,7	ISPRA (2017)
				Fattori di emissione
				per le sorgenti di
				combustione
				stazionarie in Italia,
Fuel oil	1000 kg = t	11,9 kWh/kg	264,9	ISPRA (2017)

6.2 Energy carriers applied in companies in Austria

Energy carrier	Unit	Scaling factor to convert to kWh (if applied)	CO2 coefficient kg/MWh (total: direct plus indirect)	Comment / e.g. Source, if available
District Heating	MWh	1000	203 kg/MWh	https://secure.umwelt bundesamt.at/co2mon /co2mon.html
Electricity	MWh	1000	258	https://secure.umwelt bundesamt.at/co2mon /co2mon.html
Wood pellets and briquettes	1000 kg = t	5 kWh/kg 5000 kWh/t	38	https://secure.umwelt bundesamt.at/co2mon /co2mon.html
Natural gas	1000 m3	10,1 kWh/Nm ³¹ 10100 kWh/1000 Nm ³	271	https://secure.umwelt bundesamt.at/co2mon /co2mon.html
Fuel oil	1000 kg = t	Heizöl Extraleicht: 11,89 kWh/kg 11890 kWh/t	337	https://secure.umwelt bundesamt.at/co2mon /co2mon.html

_

¹ One standard cubic meter (Nm³) of gas is the quantity of a gas contained in a volume of 1 m³ at 1.01325 bar and 273.15 K (0 °C). Since the mass is constant at 1 bar and 8 bar pressure as already described, the contained standard volume is therefore also constant.

6.3 Energy carriers applied in companies in France

Energy carrier	Unit	Scaling factor to convert to kWh (if applied)	CO2 coefficient	Comment
Heavy fuel oil	Tonne or MWh	11,6 MWh/tonne	272 kg/MWh	
Gas	m3 or MWh	9,69 kWh/m3	204 kg /MWh	
District Heating	MWh	-	It really depends on the heating networks	Is it possible to leave a field that can be completed according to the city's district heating?
Electricity (average)	kWh -MWh	-	78 kg/MWh	
Wood pellets	tonne	4,6 MWh/tonne	-	
Firewood (stems and split firewood)	Stere	1,68 MWh/stere	-	
Domestic fuel oil	m3 ou kWh	10 MWh/m3	272 kg/MWh	
Propane	kWh ou m3	0,254 kWh/m3	204 kg/MWh	
Butane	kWh ou m3	0,328 kWh/m3	233 kg/MWh	

6.4 Energy carriers applied by companies in Switzerland

Energy carrier	Unit	Scaling factor to convert to kWh (if applied)	CO2 coefficient	Comment
Fuel	Liter	1 liter = 9.9 kWh Hu	277 kg CO2/MWh Hu	https://www.energie-umwelt.ch/tools/835-einheiten-umrechner-fuer-verschiedene-heizenergie und https://www.energieschweiz.ch/media/309179/richtlinie_zielvereinbarungen_mit_dem_bund_zur_steigerung_der_energieeffizienz.pdf
Gas	kWh ho oder m3	11.43 kWh Ho/m3 or 10.32 kWh Hu/m3,	202 kh CO2 /MWh Hu	Scaling m3 kWh depends on gaz and altitude. http://www.swissgas.ch/fileadmin/user_uplo ad/swissgas/downloads/Erdgaseigenschaften _2017_SG_F.pdf
District Heating Supplier 1	kWh		von 0 kg CO2/MWh bis 205 kg	
District Heating Supplier 2	kWh		CO2/MWh, see list of federal office	
District Heating Supplier x	kWh		for energ.	
Wood pellets	kg	4.8 kWh/kg	0	https://www.holzenergie.ch/uploads/tx ttpro ducts/datasheet/403energieinhalt graueEner gie DFI 05.pdf, CO2 wird generell als 0 emissionen betrachtet.
Wood chips	m3	700-1000 kWh/m3	0	
Mean renewable electricity mix	kWh		9 kg CO2/MWh	https://www.bafu.admin.ch/bafu/de/home/themen/klima/klimawandelfragen-und-antworten.html
Mean user electricity mix	kWh		169 kg CO2/MWh	https://www.bafu.admin.ch/bafu/de/home/themen/klima/klimawandelfragen-und-antworten.html

6.5 Energy carriers applied in companies in Finland

		Scaling factor		
.		to convert to		
Energy carrier	Unit	kWh (if applied)	CO2 coefficient	Comment
District Heating Supplier 1				
(average in			149 kg	
2017)	MWh	1000	CO2/MWh	
				https://www.motiva.fi
District Heating				/files/14691/Erillistuot
Supplier 2 (group with lowest				annon_paikkakunnat_
emissions)	MWh	1000	20 kg CO2/MWh	2018.pdf
·			_	https://www.motiva.fi
District Heating				/files/14691/Erillistuot
Supplier 3 (group with highest			450 kg	annon_paikkakunnat_
emissions)	MWh	1000	CO2/MWh	2018.pdf
,				https://www.motiva.fi
E				/files/14691/Erillistuot
Electricity (average in			164 kg	annon_paikkakunnat_
2016)	MWh	1000	CO2/MWh	2018.pdf
				http://www.stat.fi/stat
				ic/media/uploads/tup/
			07 t CO2/T L =	khkinv/khkaasut_poltt
Peat pellets and		18 GJ/t * 278	97 t CO2/TJ = 349 kg	oaineluokitus_2018.xls
briquettes	1000 kg = t	kWh/GJ = 5000	CO2/MWh	х
				http://www.stat.fi/stat
				ic/media/uploads/tup/
		20 5 0 1/40000	EE 2 + 000/E1 -	khkinv/khkaasut_poltt
		36,5 GJ/1000 m3 * 278 kWh/GJ =	55.3 t CO2/TJ = 199 kg	oaineluokitus_2018.xls
Natural gas	1000 m3	10100	CO2/MWh	x
				http://www.stat.fi/stat
				ic/media/uploads/tup/
Firewood /stars			100 6 t CO2/T ! =	khkinv/khkaasut_poltt
Firewood (stems and split		14 GJ/t * 278	109.6 t CO2/TJ = 395 kg	oaineluokitus_2018.xls
firewood)	1000 kg = t	kWh/GJ = 3900	CO2/MWh	x
				https://www.motiva.fi
				/files/6817/CO2-
		42,5 GJ/t * 278	261 kg	laskenta_yksittainen_k
Light fuel oil	1000 kg = t	kWh/GJ = 11800	CO2/MWh	ohde.pdf